圆的面积教案

时间:2023-12-17 00:23:56
圆的面积教案模板锦集6篇

圆的面积教案模板锦集6篇

作为一名无私奉献的老师,就有可能用到教案,教案是实施教学的主要依据,有着至关重要的作用。那么问题来了,教案应该怎么写?以下是小编为大家整理的圆的面积教案6篇,仅供参考,欢迎大家阅读。

圆的面积教案 篇1

【教学内容】

《义务教育课程标准实验教科书·数学》六年级上册第69~71例1、例2。

【教学目标】

1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。

2.能够利用公式进行简单的面积计算。

3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

【教、学具准备】

1.CAI课件;

2.把圆8等分、16等分和32等分的硬纸板若干个;

3.剪刀若干把。

【教学过程】

一、尝试转化,推导公式

1.确定“转化”的策略。

师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

预设:

引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。

师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?

师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

2.尝试“转化”。

师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)

请大家看屏幕(利用课件演示),老师先给大家一点提示。

圆的面积教案 篇2

教学目标:

1、使学生学会已知圆的周长求圆的面积的解题思路与方法,理解并学会环形面积。

2、培养学生灵活、综合运用知识的能力,运用所学的知识解决简单的实际问题。

3、培养学生的逻辑思维能力。

  教学重点:培养综合运用知识的能力。

教学难点:培养综合运用知识的能力。

  教学过程:

一、复习。

1、口算:

3242528292202

267

2、思考:

(1)圆的周长和面积分别怎样计算?二者有何区别?

(2)求圆的面积需要知道什么条件?

(3)知道圆的周长能够求它的面积吗?

二、新课。

1、教学练习十六第3题

小刚量得一棵树干的周长是125.6cm,这棵树干的横截面积是多少?

已知:c=125.6厘米s=r2

r:125.6(23.14)3.14202

=125.66.28=3.14400

=20(厘米)=1256(平方厘米)

答:这棵树干的横截面积1256平方厘米。

3、教学环形面积。

(1)例2光盘的银色部分是个圆环,内圆半径是2cm,外圆半径是6cm。它的面积是多少?

已知:R=6厘米r=2厘米求:s=?

3.14623.1422

=3.1436=3.144

=113.04(平方厘米)=12.56(平方厘米)

113.04-12.56=100.48(平方厘米)

第二种解法:3.14(62-22)=100.48(平方厘米)

(2)小结:环形的面积计算公式:

S=R2-r2或S=(R2-r2)

(3)完成做一做:一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

三、巩固练习。

1、学校有个圆形花坛,周长是18.84米,花坛的面积是多少?

选择正确算式

A、(18.843.142)23.14

B、(18.843.14)23.14

C、18.8423.14

2、环形铁片,外圈直径20分米,内圆半径7分米,环形铁片的面积是多少?

3、课堂小结。

(1)这节课的学习内容是什么?

(2)求圆的面积时题中给出的已知条件有几种情况?怎样求出圆面积?

已知半径求面积S=r2

已知直径求面积S=()2

已知周长求面积S=()2

(3)环形面积:S=(R2-r2)

  四、作业

课本P70第4、6、7题。

教学追记:

本堂课,在我带领着学生利用教具进行操作,在此基础上,让学生自主发现圆的面积与拼成长方形面积的关系,圆的周长、半径和长方形的长、宽的关系,并推导出圆的面积计算公式。教学环形的面积计算时,我充分放手给学生,让学生通过思考讨论领悟出求环形的面积是用外圆面积减去内圆面积,并引导他们发现这两种算法的一致性,同时提醒学生尽量使用简便算法,减少计算量。

圆的面积教案 篇3

教学目标

1.使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;

2.培养学生动手操作的能力,启发思维,开阔思路;

3.渗透初步的辩证唯物主义思想。

教学重点和难点

圆面积公式的推导方法。

教学过程设计

(一)复习准备

我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?

已知半径,圆周长的一半怎么求?

(出示一个整圆)哪部分是圆的面积?(指名用手指一指。)

这节课我们一起来学习圆的面积怎么计算。

(板书课题:圆的面积)

(二)学习新课

1.我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。

决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。

展示曲变直的变化图。

2.动手操作学具,推导圆面积公式。

为了研究方便,我们把圆等分成16份。圆周部分近似看作线段,其用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。

思考:

(1)你摆的是什么图形?

(2)所摆的图形面积与圆面积有什么关系?

(3)图形的各部分相当于圆的什么?

(4)你如何推导出圆的面积?

(学生开始动手摆,小组讨论。)

指名发言 ……此处隐藏4541个字……师:对我们的估计需要进行?

生:验证。

师:用什么方法验证呢?

师:下面请大家先数数圆的面积是多少。

师:数起来感觉怎么样?有没有更简洁一点的方法?

(引导学生发现可以先数出 个圆的方格数,再乘4就是圆的面积)

(让学生在图1中数一数,用计算器算一算,填写表格里的第1行。)

圆的半径

(cm)

圆的面积

(cm2)

圆的面积

(cm2)

正方形的面积

(cm2)

圆的面积大约是正方形面积的几倍

(精确到十分位)

(3)师:只用一个圆,还不足以验证猜想,作业纸上老师还准备了两个圆,同桌合作,分别用同样的方法把研究成果填写在表格中。(课件出示图2和图3)

(学生完成后交流汇报。)

师:仔细观察表中的数据,你有什么发现?

生:这三个圆的半径虽然不同,但是圆的面积都是它对应正方形面积的3倍多一些。

3、师:正方形面积可以用r2表示,那圆的面积和它半径平方之间有什么关系呢?

生:圆的面积是它半径平方的3倍多一些。

小结:我们经过猜测——数方格——验证,最终发现圆的面积是正方形面积也就是它半径平方的3倍多一些。

【设计意图:从学生熟悉的数方格开始学习圆面积的计算,有利于学生从整体上把握平面图形面积计算的学习,有利于充分激活学生已有的关于平面图形面积计算的知识和经验,从而为进一步探索圆的面积公式作好准备。由数方格获得的初步结论对接下来的转化推导相互印证,使学生充分感受圆面积公式推导过程的合理性。】

三、实验操作、推导公式

1、感受转化,渗透方法

(课件再次出示马吃草图)

师:知道了3倍多一些,就能准确算出这匹马最多可以吃多大面积的草了吗?

(引导学生发现,3倍多一些到底多多少还不清楚,需要继续研究能准确计算圆面积的方法。)

2、师:大家还记得平行四边形、三角形、梯形的面积计算公式分别是如何推导出来的吗?

(学生回忆后汇报,教师演示,激活转化思路)

3、第一轮探究——明确思路,体会转化

师:想想看,圆能不能转化成学过的图形?是否可以化曲为直呢?

生:剪圆。

师:怎么剪呢?沿着什么剪?

生:沿着直径或半径剪开。

(分别演示2等份、4等份、8等份,引导学生发现边越来越直,剪拼的图形越来越平行四边形)

4、第二轮探究——明确方法,体验极限

师:刚才我们将圆分别剪成4等份、8等份再拼成新的图形是想干什么呀?

生:想把圆形转化成平行四边形。

师:那还能更像吗?

生:可以将圆片平均分成16份。

(引导学生把16、32等份的圆拼成近似的长方形,上台展示)

师:从哪儿可以看出这两幅图更接平行四边形了?

生:边更直了。

师:是什么方法使得边越来越直了?

生:平均分的份数越来越多。

(引导学生体验把圆平均分成64份、128份……剪拼后的图形越来越接近长方形)

师:如果我们平均分的份数足够多,就化曲为直,最后拼成的图形——就成长方形了。

【设计意图:通过这一环节,渗透一种重要的数学思想——转化,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧的知识解决新的问题,从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我们可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识,为新知识的“再创造”做好知识的准备。学生展开想象的翅膀,从而得出等分的份数愈多,拼成的图形就越接平行四边形。在想象的过程中蕴含了另一个重要数学思想的渗透——极限思想。】

(2)师:我们把圆转化成了长方形,什么变了,什么没变?

生:形状变了,面积大小没有变。

师:这样就把圆的面积转化成了?

生:长方形的面积。

师:要求圆的面积,只要求出?

生:长方形的面积。

5、第3轮探究——深化思维,推导公式

师:仔细观察剪拼成的长方形,看看它与原来的圆之间有什么联系?将发现填写在作业纸第2题中,然后小组内交流一下。

(小组讨论,发现:长方形的宽等于圆的半径,长方形的长等于圆周长的一半。)

师:长方形的宽和圆的半径相等,这里的宽也可以用r表示。那么,长方形的长又可以怎么表示呢?(重点引导学生理解长:C÷2=2πr÷2=πr)

(通过长方形面积计算方法,引出圆的面积计算方法)

师:圆的面积是它半径平方的3倍多一些,准确地说是它半径平方的多少倍?

生:π倍。

师:有了这样的一个公式,知道圆的什么,就可以计算圆的面积了。

生:半径。

5、做“练一练”

完成作业纸第3题,交流反馈。

6、(课件再次出示牛吃草图)

师:这匹马最多能吃多大面积的草,现在会求了吗?

【设计意图:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去探索新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和演算推理能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。】

四、解决问题、拓展应用

1、师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。

(课件出示例9)

分析题意后学生独立完成书本第105页例9。

(组织交流,评价反馈)

2、完成作业纸第4题

师:接着看,默读题目,完成作业纸第3题。

(学生独立完成,交流反馈)

五、全课小结、回顾反思

师:你们对于圆面积的疑问现在解开了吗?又有了哪些新的收获?

师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!

【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】

板书设计:

圆的面积

转化

新的图形学过的图形

演示图

长方形的面积=长×宽

圆的面积=圆周长的一半 × 半径

S=πr×r

=πr2

(1)3.14×22(2)8÷2=4(cm)

=3.14×43.14×42

=12.56(cm2)=3.14×16

=50.24(cm2)

《圆的面积教案模板锦集6篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式